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Introduction

Live-cell imaging enables acquisition of phase contrast images and provides an ideal platform to study multi-faceted 
biological paradigms in drug discovery. This is vital to our understanding of human diseases and treatment strategies.  
The movement of these models towards increasingly complex physiologically relevant ones, including patient-derived cells 
and induced pluripotent stem cells (iPSCs), has concurrently driven the need for label-free methods that are non-perturbing 
to deliver deeper biological insights.1, 2 The elimination of fluorescent reporters reduces workflow time, ensures that experimental 
outcomes are not attributed to the label, or labeling process itself, and is non-perturbing for when fluorescent labeling is not 
possible, such as when using rare or sensitive cell types.3, 4

Incorporating artificial intelligence (AI) into image analysis workflows has enabled powerful quantification of a wide range of 
cellular models, allowing researchers to make data-driven decisions and understand disease at a more granular level.5 These 
leading-edge technologies, based on neural-network algorithms, are much more complex than traditional image analysis and 
facilitate more robust segmentation of heterogenous cell morphologies whilst minimizing user-introduced bias.2 However, 
there exists several barriers to the widespread use of AI in image analysis, including hardware requirements, knowledge of 
training and testing methods, access to robust datasets for training, pre- and post-processing image analysis pipelines with  
a vast amount of data, and the general applicability of algorithms across cell types.6
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In this application note, we describe an automated, robust 
solution for label-free cell segmentation and live/dead 
classification of individual cells using integrated AI-based 
software. The Incucyte® AI Cell Health Analysis Software 
Module, driven by trained convolutional neural networks 
(CNN), allows us to reliably monitor cell viability in a non-
perturbing unbiased manner with minimal user input. 

Here, we show validation of the analysis software across a 
wide range of live and dead adherent and non-adherent 
cell types and exemplify how this approach can provide 
high-throughput, physiologically relevant insights into cell 
health through accurately predicting cell death across 
multiple treatments. 
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Assay Principle

The Incucyte® AI Cell Health Analysis Software Module 
enables label-free quantification of live or dead cells. The 
analysis module uses trained CNNs, which automatically 
analyze images to segment individual cells and classify them 
as live or dead, all in one step. This streamlined workflow 
(Figure 1) requires little user input, providing unbiased 
results which can be directly compared across assays.

Phase contrast images are acquired using AI Scan 
acquisition with 10x or 20x objectives. These images can be 
analyzed using Incucyte® AI Cell Health Analysis Software 
Module which provides metrics such as Total Cell Count (All 
Objects), as well as the number and percentage of live and 
dead cells. In cases where optional fluorescence images are 
acquired, the Mean and Total Integrated Intensity within all 
cells, as well as the live or dead subpopulations, will be 
provided. Fluorescence classification can be performed as 
an additional analysis, again providing metrics describing 
the count and percentage of high vs low fluorescence 
within total cells, and within live or dead subpopulations.
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Figure 1:  Incucyte® AI Cell Health Analysis Workflow. 

Phase Contrast Images Are Acquired and Processed Using Neural Networks (CNN), to Automatically Segment and Classify Cells as Live or Dead.

Precise segmentation provides accurate cell count data 
even at high cell confluence (up to 99% depending on cell 
morphology), yielding reliable proliferation data. Label-free 
classification of cells as live or dead enables quantification 
of cell viability within a physiologically relevant and non-
perturbing environment. Combining this label-free analysis 
with optional fluorescence readouts from the live or dead 
subpopulations provides additional insight into 
mechanisms of cell death.
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AI-Driven Cell Segmentation

The AI Cell Health segmentation model was trained using 
phase contrast images which were manually annotated to 
identify the boundary of individual cells. A wide diversity of 
over 2 million individual cells were annotated including 
adherent and non-adherent cell types at a range of 
confluences, both healthy and apoptotic; adherent cell 
examples covered a wide range of morphologies. This broad 
spectrum of cells ensures that the final trained model is 
highly versatile, competently segmenting a multitude of cell 
types - even those which were not included within the 
training and validation datasets.7

The resulting segmentation is highly accurate even in 
confluent images and adapts to a multitude of cell 
morphologies – even where these are present within the 
same image. Figure 2 shows the AI segmentation applied  
to a highly clustering breast cancer cell line (MCF-7), an 
invasive epithelial-like cell line (MDA-MB-231), flat and 
transparent primary cells (primary rat astrocyte), and a 
non-adherent B cell line (Ramos). In addition, dead cells  
are accurately delineated (HMC3 cells treated with 
camptothecin, 1.1 µM), as are monocytes in the presence  
of pHrodo® Bioparticles® for Incucyte® (RAW 264.7 in the 
presence of E. coli bioparticles, 10 µg per well).

Figure 2:  AI Cell Health Analysis Accurately Segments a Wide Range of Cell Types With Diverse Morphologies, 
Including Apoptotic Cells and Cells in the Presence of Bioparticles.
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bioparticles are engulfed (Figure 3B), and the total intensity 
is dependent on the densities of both bioparticles and cells 
(Figure 3C). Fluorescence classification of cells as high or 
low intensity enables identification of cells which are 
phagocytic (Figure 3D). At 30 µg/mL bioparticles, around 
40% of the cells are phagocytic; this percentage decreases 
as the amount of bioparticles decreases. Interestingly, the 
percentage of phagocytic cells is independent of the cell 
seeding density but increases with higher bioparticle 
density, suggesting the bioparticles themselves have an 
activating effect.

The segmentation model is trained specifically to detect 
cells and therefore ignores most non-cell objects. Cell 
segmentation is thus possible even in the presence of 
debris, compound precipitate, or bioparticles. Figure 3 
demonstrates this advantage, showing primary 
macrophages accurately segmented in the presence of 
pHrodo® E. coli Bioparticles® for Incucyte® (10 µg/mL, 24 hr 
post treatment). As the bioparticles are engulfed, they are 
processed into acidic lysosomes, and the low pH causes 
the pHrodo® label to increase in fluorescence intensity. 
Quantification of fluorescence within the AI-masked cell 
boundary shows increasing intensity over time as the 

Figure 3:  Robust Cell Segmentation Enables Accurate Quantification of Phagocytic Cells. 

Images show primary macrophages 12 hr post treatment with pHrodo® E. coli Bioparticles® for Incucyte® (A). Non-engulfed bioparticles are visible in 
the phase contrast image while engulfed bioparticles fluoresce (green). AI Cell Segmentation shows accurate masking of cells alone, and 
fluorescence classification indicates phagocytic (magenta outline, high fluorescence) and non-phagocytic (blue outline, low fluorescence) cells. 
Time course demonstrates increasing fluorescence intensity within the segmented cell boundary over 12 hr (B). The increase in fluorescence is both 
cell- and bioparticle-dependent (C), while the percentage of phagocytic cells is dependent on bioparticle concentration but not cell density (D). 
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Images of HeLa cells treated with camptothecin (1.1 µM, 
24 hr) with applied live (top image) and dead (bottom 
image) classification masks (Figure 4A) indicate a high 
correlation between cells which were analyzed using both 
label-free analysis (outline class mask) and fluorescence 
analysis (filled class mask). Time-course analyses of % dead 
cells induced by increasing concentrations of cisplatin (top 
graph, label-free analysis; bottom graph, fluorescence 
analysis) display similar time and concentration dependent 
responses (Figure 4B). The concentration response curves 
compare % death at 72 hr for 4 cytotoxic compounds 
calculated using label-free and fluorescence analysis 
(Figure 4C).

This validation was performed across a wide range of 
adherent and non-adherent cell lines in monoculture and 
confirmed that the label-free Incucyte® AI Cell Health 
Analysis accurately identifies cell death induced by 
compounds with different efficacies and mechanisms 
of action.

AI-Driven Live/Dead Classification

The AI model for classification was trained using pairs of 
phase contrast and fluorescence images of cells treated 
with cytotoxic compounds in the presence of Incucyte® 
 Cytotox Dye. These paired images enable the neural 
network to infer cell death responses from the phase 
contrast image alone. These two AI models were combined 
to form the Incucyte® AI Cell Health Analysis Software 
Module, which was validated on multiple cell types using 
fluorescent markers for comparison. During validation 
studies, cells were treated with cytotoxic compounds in the 
presence of Incucyte® Cytotox Dye which enters non-viable 
cells, increasing their fluorescence intensity. Quantification 
of cell death was performed using both AI Cell Health Live | 
Dead classification (AI-driven, label-free analysis) and 
fluorescence classification of Cytotox positive cells. Cell 
image classification, evaluation of cell death time courses, 
and concentration response curves determining 
compound efficacy were used to confirm that cells 
exhibiting high fluorescence of Incucyte® Cytotox Dye are 
also being classed as dead by the Incucyte® AI Cell Health 
Analysis Software Module (Figure 4).

Figure 4:  AI Cell Health Analysis Generates Comparable Cytotoxicity Data to Standard Fluorescence Methods.

HeLa cells were treated with concentration ranges of 4 different cytotoxic compounds in the presence of Incucyte® Cytotox Dye. Images show HeLa 
cells 24 hr post treatment with camptothecin. Top image (A) shows classification of live cells using Incucyte® AI Cell Health label-free analysis (blue    
outline) and fluorescence analysis of Cytotox Negative cells (yellow fill). Bottom image shows classification of dead cells (red outline) and cytotox 
positive cells (green fill) in the same image. Time courses (B) show the percentage of dead cells over time using label-free analysis (top row) or 
fluorescence classification (bottom row) of HeLa cells treated with increasing concentrations of cisplatin. Concentration response curves (C) plot cell 
death at 72 hr post treatment of camptothecin (CMP, black), staurosporine (STP, grey), doxorubicin (DOX, teal) and cisplatin (CIS, magenta). The table 
indicating log IC50 values confirms that across compound with different mechanisms of action the efficacy values as calculated by label-free and 
fluorescence methods are comparable.
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Vehicle control and similar compounds induced no 
inhibitory effect on cell growth (% confluence) and cell 
viability (% live) – these cluster in the top right of the scatter 
plot. Cytostatic compounds typically reduce cell growth but 
do not reduce cell viability – these compounds cluster in 
the top middle. In contrast, cytotoxic compounds reduce 
both cell growth and viability, clustering in the bottom left 
part of the plot.

Incucyte® AI Cell Health Analysis is conducive to compound 
screen experiments in 96 and 384- well microplates. The 
highly adaptable analysis can be applied to cells with a wide 
range of morphologies providing directly comparable 
datasets, and visualization of the % dead cells per well in 
microplate view (Figure 5A) enables rapid and simple 
identification of cytotoxic compounds or conditions. End-
point analysis at 48 hr post-treatment (Figure 5B) was used 
to confirm assay window and identify mechanisms of action 
between the vehicle (teal point) and positive control (high 
camptothecin, magenta point).  

Figure 5:  Analysis of Compound Effects in Non-adherent Cells.

Jurkat cells were seeded into 96-well plates coated with poly-L-ornithine and briefly centrifuged to lightly adhere to the plate surface.  
Cells were treated with 14 compounds in triplicate wells with high and low concentrations of each and placed into the Incucyte® to acquire phase 
contrast images every 2 hr for 3 days. Incucyte® AI Cell Health Analysis was used to quantify the % dead cells in each image over time (A). Mecha-
nism of action was examined by correlating cell viability (AI Cell Health % live) with cell growth (AI Confluence) at 48 hr post treatment. Vehicle 
(teal) conditions displayed high viability and high growth; cytostatic compounds exhibit reduced cell growth but viability remains high; cytotoxic  
compounds including positive control camptothecin (10 µM, magenta) reduce both viability and growth.
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Apoptosis Dye was included. Phase contrast and 
fluorescence images were acquired every 2 hr for 3 days. 
Total cell death was quantified using Incucyte® AI Cell 
Health Analysis and indicated that staurosporine induced 
rapid cell death in the presence of all concentrations of 
Z-VAD-FMK (Figure 6A). Within the dead cell population, 
caspase activation was measured using fluorescence 
classification. Time course (Figure 6B) shows that the 
number of caspase positive dead cells decreased as the 
concentration of Z-VAD-FMK increased with efficacy  
log IC50 = -4.3 M (Figure 6C).

Combined Label-Free and Fluorescence Analyses  
Yield Additional Insight Into Mechanism of Apoptosis
Incucyte® AI Cell Health Analysis Software Module provides 
label-free analysis of live and dead cells, however label-free 
analysis also enables deeper insight into cell behavior when 
combined with optional fluorescence measurements. 
Staurosporine is known to induce cell death via both 
caspase-dependent and caspase-independent 
mechanisms. To examine these pathways, MDA-MB-231 
cells were treated with staurosporine (1 µM) in the presence 
of pan-caspase inhibitor Z-VAD-FMK (3 – 250 µM). 
To measure caspase activation, Incucyte® Caspase 3/7 

Figure 6:  Label-Free Analysis With Additional Fluorescence Information Reveals Mechanisms of Apoptosis. 

MDA-MB-231 cells were treated with staurosporine (1 µM, magenta) in the presence of caspase inhibitor Z-VAD-FMK (3 - 250 µM, grey) and Incucyte® 
Caspase 3/7 Apoptosis Dye. Total cell death was quantified using AI Cell Health label-free classification, and time course indicates that staurosporine 
induces cell death in the presence of all concentrations of Z-VAD-FMK (A). Fluorescence classification of caspase activity within the dead cell  
population reveals that Z-VAD-FMK reduces the number of caspase positive dead cells in a time-and concentration-dependent manner (B, C).
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Summary & Conclusion

Incucyte® AI Cell Health Analysis Software Module enables 
accurate cell segmentation and live/dead classification. 
Using trained neural networks integrated into the Incucyte® 
live-cell analysis workflow, we have enabled user-friendly 
deployment of AI models for cell analysis which provide 
label-free quantification of cell death over time. Label-free 
analysis yields non-perturbing quantification of cytotoxicity 
which is increasingly vital when using precious patient-
derived cell types. However by combining the label-free 
analysis with optional fluorescence readouts, additional 
information on the mechanisms of apoptosis can also be 
revealed.
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